If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+63x-63=0
a = 7; b = 63; c = -63;
Δ = b2-4ac
Δ = 632-4·7·(-63)
Δ = 5733
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5733}=\sqrt{441*13}=\sqrt{441}*\sqrt{13}=21\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-21\sqrt{13}}{2*7}=\frac{-63-21\sqrt{13}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+21\sqrt{13}}{2*7}=\frac{-63+21\sqrt{13}}{14} $
| 4n+23+3n+31=180 | | 6t^2-18t+2=0 | | 2n+18=3n+12 | | -6y-y2=0 | | 5x+8x=47(3)+54 | | 2x+589=1368 | | -0.50y-(8-5)=3y-2 | | 2(4y+1)=5(3-y) | | (3^x)^3=3 | | X=8x-14=18 | | 4(2a+2)-17=5 | | X=8x-6=1+x | | 33/4÷(12/3×3)=g | | 0.25x-3=-0.50x+3 | | ×=5(x+4)=9x-6 | | 6(x-1)=7(x-3( | | 6(x-1)=7(x-3 | | X=5(×+4)=9x-6 | | -10x(x+3)+28=-16-16 | | 9x-2x-4=6x-2x+8 | | 6-5/z=9 | | 17(35+x)=1360 | | 4z|9-8=1 | | 1360=(x+35)17 | | 4z/9-8=1 | | 2(6x-3)=21 | | 3(x-10)=8(-5+x) | | 58*6=x | | 26(p+30)=2288 | | X=-7,x=5 | | 3675-860=x | | 43*20=x |